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ABSTRACT: Quantum chemical calculations (B3LYP and MP2) are
described for the formation and rearrangements of carbocations
derived from the biological methylation reaction that produces
24-propyl sterols in pelagophyte algae. Previous mechanistic proposals
are discussed in light of the results of these calculations. Of particular
note is the prediction of a new triple-shift rearrangement that is
inherently preferred for the biosynthetically relevant carbocations. Our
calculations also reveal how these reactions may be affected by intermolecular interactions with S-adenosylmethionine.

■ INTRODUCTION
The side chains of sterols are often elaborated via hydrogenation,
dehydrogenation, and methylation, and various mechanistically
interesting cationic rearrangements occur during their biosyn-
thesis.1,2 For example, in pelagophyte algae, the enzymatic reaction
of isofucosterol (1) with S-adenosylmethionine (SAM) leads to
24-propylidenecholesterol (3), together with the minor products
depicted in Scheme 1.3 This is in contrast to the mechanistically

more commonplace outcome in sponges and orchids where
24-isopropyl sterols (e.g., 4) are formed.4 Based on the co-
occurrence of cyclopropyl sterol 2 and the results of isotopic
labeling experiments, mechanisms for the formation of 3
involving protonated cyclopropane intermediates (Scheme 2,
black arrows; B is a protonated cyclopropane) have been
proposed.1,3c−e Herein we describe the results of quantum
chemical calculations (both density functional theory (DFT) and
MP2 calculations5−12) on mechanisms leading from 1 to 2−6.13
On the basis of these results, we suggest a modified mechanistic
picture that involves a protonated cyclopropane as a transition

state structure rather than an intermediate and several steps in
which two or three alkyl or hydride shifting events are merged
into concerted processes (Scheme 2, red arrows).14 We also
examine the potential roles of the thioether left behind after the
transfer of the SAM methyl group.

■ RESULTS AND DISCUSSION
Our calculations involved, as a starting point, a model (A1,
Figure 1) of the classical tertiary carbocation (carbenium ion)
derived from CH3

+-transfer to 1 (A, Scheme 2) in which the
steroid nucleus and two adjacent carbons of the side chain of
carbocation A were replaced by hydrogen (all model cations are
named using the letters in Scheme 2 followed by the number 1;
calculations in the absence of an enzyme).15,16 Using this model,
A → C (precursor to 3), A → D (precursor to 4), and A → F
(precursor to 6) rearrangements were examined.
As shown at the top of Figure 1, the conversion of A1 to C1

is computed to be a concerted process in which three events,
1,2-methyl shift (C30 from C28 to C24), 1,3-hydride shift (from
C30 to C28), and 1,2-ethyl shift (C28 from C24 to C30), are
merged into a single step with no intermediates.14 These three
events occur asynchronously, with the methyl shift occurring
early and the ethyl shift late, as shown by the results of intrinsic
reaction coordinate calculations; the same process was observed
when using B3LYP or MP2 calculations (Figure 2).17 These
calculations indicate that the biosynthetic reaction should involve
structures resembling secondary and primary carbocations along
the pathway, but not as intermediates (E and H in Scheme 3).
A similar triple-shift reaction was described previously as part of
the biosynthesis of atiserene, a polycyclic diterpene.18

The transition state structure for this triple-shift reaction
(Figures 1 and 2) actually resembles the previously proposed edge-
protonated cyclopropane intermediate (B, Scheme 2).1,3d,e,19
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Figure 3a shows the charge distribution in this transition state
structure from two views; clearly Ha (the bridging hydrogen)
and the C30 methylene group are the most positive regions of
this structure. Figure 3b shows computed chemical shifts for the
various protons and carbons in the transition state structure.
Although these are not simple to interpret,20 it is clear that C30
is the most electron-deficient of the three carbons involved in
the triple shift (C24, C30, and C28). Taken together, the
charge distribution and chemical shifts suggest that a resonance
structure containing a primary cation substructure actually
contributes significantly to the electronic structure of the
transition state.
Our calculations on the proposed biosynthesis of sterol 6

(Scheme 2) indicate that the conversion of A to F′ also involves an
interesting reaction that avoids a previously proposed intermediate.
We have found a concerted reaction in which A1 is converted
directly to G1 (Figure 1) and E is not an intermediate but rather
appears to be a transition state structure for the A1-to-G1 reaction.
This process involves the asynchronous combination of two alkyl
shifts (C30 fromC28 to C24 andC23 fromC24 to C28; Figure 4),
an example of an asynchronous dyotropic rearrangement.21 Several
recent theoretical studies have revealed similar dyotropic rearrange-
ments that avoid the formation of secondary carbocations as
intermediates in biosynthetic pathways to terpene natural products
and instead have transition state structures resembling secondary
carbocations.9a,10b,14,18,21f,22 Carbocation G1 then undergoes a
simple, low-barrier 1,2-hydride shift to form F1′ (Figure 1).23 Note

that in our proposed reaction network (Scheme 2, red arrows),
cation F is not formed. This prediction, thatF′ rather than F should
precede 6, could be tested by appropriate labeling studies.24 Note
also that E1 = TS (A1−G1) is very similar in structure to the
E1-like species involved in the A1 → C1 reaction (Figure 2 and
Scheme 3), suggesting that there may be a bifurcation along the
path uphill from A1 toward TS (A1−C1).25

Scheme 2a

aAtom numbering throughout is based on that for structure 1. Note that F and F′ are equivalent only in the absence of atom labeling.

Scheme 3
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The formation of various stereoisomers of carbocation D
from A via simple 1,2-hydride shifts for various conformers of A

(see Supporting Information for details) is predicted to involve
only low barriers (<9 kcal/mol) and so should occur readily in an

Figure 2.Conversion ofA1 toC from IRC calculations using (a) the B3LYP/6-31+G(d,p) method and (b) theMP2/6-31+G(d,p) method. Energies do
not include zero-point energy corrections.

Figure 1. A1 toC1 and F1′ rearrangements. Computed geometries (distances in Å, B3LYP/6-31+G(d,p)) and energies (kcal/mol, relative to that ofA1,
B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) in normal text, mPW1PW91/6-31+G(d,p)//B3LYP/6-31+G(d,p) in brackets, MP2/6-31+G(d,p)//
B3LYP/6-31+G(d,p) in parentheses) of intermediates and transition state structures are shown.

Figure 3. (a) Electrostatic potential surface (2 views) of a small model of TS A1-C1 (B3LYP/6-31+G(d,p)) without the isopropyl group. Red areas are
least positive, and blue areas are most positive (range, +0.123 to +0.183 au). (b) Computed (B3LYP/6-311+G(d,p)//B3LYP/6-31+
G(d,p)) chemical shifts (relative to TMS): 1H in red and 13C in green.
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enzyme active site, although which particular conformer reacts, if
any, could be controlled by preorganizing the conformation of A.
These 1,2-shifts are also predicted to be readily reversible, since
none are predicted to be significantly exothermic (in fact, most are
predicted to be endothermic by several kcal/mol).26 However,
factors that favor the olefinic products of cation D over those of
cation A include less hindered approach of the base and a greater
number of hydrogens available for deprotonation.
The computed barrier for the A-to-C reaction (Figure 1) is a

bit high for a biological reaction (although this barrier could be
lowered in an enzyme active site), so we considered the possibility
of an alternative deprotonation/reprotonation mechanism. Since
Awould be formed viamethyl transfer from SAM,27 demethylated

SAM (S-adenosylhomocysteine, SAH) should be in the
vicinity of enzyme-generated A, and this thioether could, in
principle, facilitate proton transfer. This possibility was exa-
mined using S(CH3)2 as a model of SAH. Figure 5 shows
computed structures for the two-step proton transfer pathway
(A1·S(CH3)2 to C1·S(CH3)2), as well as the methyl transfer
process that leads to A1.28 Although the barrier for the methyl
transfer step is again a bit high (but again could be lowered in
an enzyme active site), the overall barrier for the proton
transfer process is significantly lower than that for the direct
A1-to-C1 reaction. Note that in the 2-step process, intermediate
cyclopropane 2 (Schemes 1 and 2) is formed by a concerted
deprotonation/cyclization.29

Figure 4. Conversion of A1 toG1 from IRC calculations using (a) the B3LYP/6-31+G(d,p) method and (b) the MP2/6-31+G(d,p) method. Energies
do not include zero-point energy corrections.

Figure 5. 1 toA1 toC1 reaction in the presence of S(CH3)2. Computed geometries (distances in Å, B3LYP/6-31+G(d,p)) and energies (kcal/mol, relative
to that of 1·S(CH3)3

+, B3LYP/6-31+G(d,p)//B3LYP/6-31+G(d,p) in normal text, mPW1PW91/6-31+G(d,p)//B3LYP/6-31+G(d,p) in brackets, MP2/6-
31+G(d,p)//B3LYP/6-31+G(d,p) in parentheses) of intermediates and transition state structures are shown. 1·S(CH3)3

+ has a small imaginary frequency
(−6.97 cm−1) associated with S(CH3)3

+ movement, and several similar complexes were located that also have small imaginary frequencies. The relative
energies of these complexes are very similar, however, and we suspect that the potential energy surface in this region is rather flat (see Supporting Information
for details).
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In addition to perturbing the A-to-C pathway, a nearby thioether
can also perturb the A-to-G pathway. As shown in Figure 6,
secondary carbocation E, which was a transition state structure in
the direct A-to-G pathway (Figure 1), appears to be a minimum
in the presence of S(CH3)2 due to enhanced hyperconjugation
between one C29−H bond and the carbocation center at C28 as
electron density is donated by sulfur (compare the C28−C29
distances forE1 andE1·S(CH3)2 in Figures 1 and 6). However, this
structure is very close in energy to the transition state structure that
leads to it. The E1·S(CH3)2 complex is actually slightly higher
in energy than the transition state structure for deprotonation
to form 5 (TS5) when zero point energy is accounted for and is
also very close in energy to the 5·HS(CH3)2

+ complex. Clearly,
this region of the potential energy surface is rather flat. Note
also that the formation of 5 is predicted to be an uphill process
that should be readily reversible if the protonated thioether
remains close.
In the presence of S(CH3)2, E1 can also be rerouted toG1 and

F1 with lower barriers (Figures 7 and 8, respectively). Conversion
to G1 (Figure 7) is predicted to be accompanied by a higher
barrier than is deprotonation to form 5 (Figure 6), by virtue of the
E1-to-E2 conformational change,30 but is a significantly exo-
thermic process. Conversion of E1 to F1 (Figure 8) is not

predicted to have a significant barrier, however, and is again an
exothermic process (although F1·S(CH3)2 and A1·S(CH3)2,
Figure 6, are similar in energy). As is the case for all of these
models, application to the biosynthetic reaction assumes that
conformational changes, in this case to form E2 and E3, are
accommodated by the enzyme active site.

■ CONCLUSIONS
Thus, the situation is complicated. First, our prediction that F′
should be formed preferentially over F does not hold when a
thioether is present. Second, the potential energy surface
surrounding cation E, when a thioether is present, is predicted
to be quite flat, allowing for the product distribution to be
controlled by rigid conformational constraints imposed by the
enzyme and/or dynamic effects.26,31

The possibility that the thioether (SAH) generated during the
enzymatic SAM-dependent methyl transfer reaction is involved
in deprotonating an intermediate carbocation cannot easily be
ruled out and is quite likely to occur in the formation of
cyclopropyl sterol 2. However, it has been shown using
chirally labeled methyl groups that methylation and
deprotonation occur from opposite sides of the double bond
in the formation of the 24-methylene sterol side chain and
tuberculostearic acid.32

Figure 6. A1 to 5 reaction in the presence of S(CH3)2. Computed
geometries (distances in Å, B3LYP/6-31+G(d,p)) and energies (kcal/
mol, relative to that of 1·S(CH3)3

+ (Figure 5), B3LYP/6-31+G(d,p)//
B3LYP/6-31+G(d,p) in normal text, mPW1PW91/6-31+G(d,p)//
B3LYP/6-31+G(d,p) in brackets, MP2/6-31+G(d,p)//B3LYP/
6-31+G(d,p) in parentheses) of intermediates and transition state
structures are shown. B3LYP and mPW1PW91 energies of TS5 are
lower than that of 5·HS(CH3)2

+ due to zero point energy corrections. At
the MP2 level, secondary cation complex E1·S(CH3)2 is predicted to
have a higher energy than TS4 and TS5.

Figure 7. E1 to G1 reaction in the presence of S(CH3)2. Computed
geometries (distances in Å, B3LYP/6-31+G(d,p)) and energies (kcal/
mol, relative to that of 1·S(CH3)3

+ (Figure 5), B3LYP/6-31+G(d,p)//
B3LYP/6-31+G(d,p) in normal text, mPW1PW91/6-31+G(d,p)//
B3LYP/6-31+G(d,p) in brackets, MP2/6-31+G(d,p)//B3LYP/
6-31+G(d,p) in parentheses) of intermediates and transition state
structures are shown. The MP2 energy of TS7 is predicted to be lower
than that of E2·S(CH3)2.
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On the whole, we have provided energetic and structural
details for species that may be involved in the biosynthesis of
sterol side chains, thereby delineating a framework for future
experimental design. We look forward to our predictions being
put to the test by bioorganic chemists, structural biologists and
mechanistic enzymologists.
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